- 1 The uses of catalysts have great economic and environmental importance. For example, catalysts are used in ammonia production and in catalytic converters.
 - (a) Nitrogen and hydrogen react together in the production of ammonia, NH₃.

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

The activation energy for the forward reaction, $E_{\rm a}$, is +250 kJ mol⁻¹.

(i) Complete the enthalpy profile diagram for this reaction between nitrogen and hydrogen.

Include the

- products
- enthalpy change of reaction, ΔH
- activation energy for the forward reaction, E_a .

(ii) What is the value of the enthalpy change of formation of ammonia?

answer =kJmol⁻¹ [1]

[3]

(iii) The reaction between nitrogen and hydrogen can be catalysed.

Suggest a possible value for the activation energy of the **catalysed** forward reaction.

answer =kJ mol⁻¹ [1]

(iv) What is the value of the activation energy for the uncatalysed **reverse** reaction (the decomposition of ammonia into nitrogen and hydrogen)?

answer =kJmol⁻¹ [1]

(b)	In a	catalytic converter, nitrogen monoxide reacts with carbon monoxide.
	(i)	Write the equation for this reaction.
		[1]
	(ii)	Outline the stages that allow nitrogen monoxide and carbon monoxide to react in a catalytic converter.
		[3]
(c)	Scie	entists monitor pollutant gases in the atmosphere.
	(i)	State two modern analytical techniques that scientists can use to monitor environmenta pollution.
		[2]
	(ii)	Explain why it is important to establish international cooperation to reduce pollution levels.
		[1]

(d) In the stratosphere, nitrogen monoxide, NO, is linked with ozone depletion.

Complete the equations below that describe how NO contributes to ozone depletion.

step 1 NO +
$$O_3$$
 \rightarrow +

$$\mbox{step 2} \qquad \qquad \mbox{NO}_2 \ + \ \ \longrightarrow \mbox{NO} \ + \ ... \ ... \ ...$$

overall
$$\cdots + \cdots + 20_2$$

[3]

(e) Hess' law can be used to calculate enthalpy changes of reaction.

The equation for the reaction that gives the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g) is as follows.

$$N_2(g) + \frac{1}{2}O_2(g) \rightarrow N_2O(g)$$

(i) It is not possible to measure the enthalpy change of formation of N₂O(g) directly.

Suggest why it is **not** possible.

(ii) The data below can be used to calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g).

reaction	enthalpy change of reaction /kJ mol ⁻¹
$C(s) + N_2O(g) \rightarrow CO(g) + N_2(g)$	-193
$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$	-111

Calculate ΔH_f for $N_2O(g)$.

$$\Delta H_{\rm f} =$$
 kJ mol⁻¹ [2]

[Total: 19]

- 2 Methane and ethane are important fuels.
 - (a) Methane could be manufactured by the reaction between carbon dioxide and hydrogen.

$$\mathrm{CO_2(g)} \ + \ 4\mathrm{H_2(g)} \ \longrightarrow \ \mathrm{CH_4(g)} \ + \ 2\mathrm{H_2O(g)}$$

Using the table of bond enthalpies, calculate the enthalpy change of reaction for this manufacture of methane.

bond	average bond enthalpy /kJ mol ⁻¹
C–H	+415
H–H	+436
C=O	+805
O–H	+464

enthalpy change of reaction = kJ mol⁻¹ [3]

	hane is a greenhouse gas. Scientists are concerned that the concentration of methane in atmosphere is slowly increasing.
(i)	Explain how atmospheric methane molecules can contribute to global warming.
	[2]
(ii)	One way that scientists hope to minimise global warming is by developing Carbon Capture and Storage, CCS, techniques.
	Describe two of these CCS techniques.
	[2]
	the (i)

- **(c)** Ethane reacts with bromine in the presence of ultraviolet radiation to form many organic products.
 - (i) Two of these products are bromoethane and hydrogen bromide.

Describe the mechanism of the reaction between ethane and bromine that forms bromoethane and hydrogen bromide.

Include in your answer

- the type of bond fission that occurs
- equations for each step of the reaction
- the name of each step of the reaction.

>	Your answer needs to be clear and well organised using the correct terminology.
	Give two reasons why there are many organic products of the reaction between bromine and ethane.
	[2]

[Total: 16]

3	Nitrogen monoxide is an atmospheric pollutant, formed inside car engines by the reaction between
	nitrogen and oxygen.

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
 $\Delta H = +66 \text{ kJ mol}^{-1}$

This reaction is endothermic.

(a) (i) Explain the meaning of the term endothermic.

[1]

(ii) What is the value for the enthalpy change of formation of nitrogen monoxide?

answer = kJ mol⁻¹ [1]

- (b) (i) Complete the enthalpy profile diagram for the reaction between nitrogen and oxygen.On your diagram
 - add the product
 - label the activation energy as E_a
 - label the enthalpy change as ΔH .

[3]

(ii) Explain the meaning of the term activation energy.

______[1

(c)	She	esearch chemist investigates the reaction between nitrogen and oxygen. e mixes nitrogen and oxygen gases in a sealed container. e then heats the container at a constant temperature for one day until the gases reach a
	dyn	amic equilibrium.
	(i)	Explain, in terms of the rate of the forward reaction and the rate of the backward reaction, how the mixture of $N_2(g)$ and $N_2(g)$ reaches a dynamic equilibrium containing $N_2(g)$, $N_2(g)$ and $NO(g)$.
		[2]
	(ii)	The research chemist repeats the experiment at the same temperature using the same initial amounts of $N_2(g)$ and $O_2(g)$. This time she carries out the experiment at a much higher pressure .
		Suggest why
		 much less time is needed to reach dynamic equilibrium the composition of the equilibrium mixture is the same as in the first experiment.
		[5]
	(iii)	The reaction between nitrogen and oxygen in a car engine does not reach a dynamic equilibrium.
		Suggest why not.
Physi	Co∆r	[1] ndMathsTutor.com
i iiyai	JJ/7/	IMIVIALIO I ALVI I VOITI

(d)	Nitr	ogen monoxide is a radical.	
	Wh	at does this tell you about a molecule of nitrogen monoxide?	
(e)	Oxi	des of nitrogen, NO _x , are atmospheric pollutants.	
	(i)	Nitrogen monoxide reacts with oxygen to form NO ₂ .	
		Write an equation for the formation of NO_2 from nitrogen monoxide and oxygen.	
			[1]
	(ii)	Aeroplane engines produce nitrogen monoxide.	
		Describe, with the aid of equations, how nitrogen monoxide catalyses ozone depletion the stratosphere.	on in
			[3]
	(iii)	Outline the use of infrared spectroscopy in identifying air pollutants such as NO_{χ} .	
			[2]

[Total: 21]

Pet	rol ar	nd diesel are both complex mixtures of hydrocarbons used as fuels in transport.
(a)		rol contains some branched chain alkanes. number of carbon atoms per molecule varies between five and nine.
	Nan	ne one branched chain alkane with between five and nine carbon atoms.
		[1]
(b)		en petrol burns in an internal combustion engine the exhaust gases contain ${\rm CO_2}$, ${\rm CO}$, ${\rm NO}$ ${\rm O_2}$, ${\rm H_2O}$ and unburnt hydrocarbons.
	(i)	What effect does the absorption of infrared radiation have on the bonds in ${\rm CO}_2$ molecules in the atmosphere?
		[1]
	(ii)	Why is CO present in the exhaust gases?
	(iii)	Both NO and CO are atmospheric pollutants.
		For each pollutant, describe one environmental problem.
		NO
		CO
		[2]
(c)		st cars are fitted with a catalytic converter which catalyses the exothermic reaction betweer and CO to form two less harmful gases.
	(i)	Name the two gases formed and write an equation for this reaction.
		[2]

(ii)	NO and CO react very slowly without a catalyst. The catalyst in a catalytic converter increases the rate of reaction.
	Explain, using an enthalpy profile diagram and the Boltzmann distribution model, how the use of a catalyst increases the rate of reaction.
PhysicsAr	ndMathsTutor:com·····[7]

Describe the benefits and disadvantages of changing from diesel to biodiesel.
plants $ ightarrow$ plant oil $ ightarrow$ long chain carboxylic acids $ ightarrow$ biodiesel
Biodiesel is a methyl ester of a long chain carboxylic acid. The flow chart shows how it is produced.

(d) Many lorries and some cars use diesel powered engines.
Biodiesel is being developed as a substitute for diesel from crude oil.